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Abstract

EXTREME HEAT AND MENTAL HEALTH-RELATED OUTCOMES IN ADOLESCENT
POPULATIONS: A MACHINE LEARNING APPROACH

Luke Wertis
B.S., Appalachian State University
M.A.., Appalachian State University

Chairperson: Margaret Sugg

There is growing evidence indicating that extreme environmental conditions in

summer months have an adverse impact on mental and behavioral disorders (MBD), but there

is limited research looking at adolescent populations. The objective of this study was to apply

a machine learning approach to identify key environmental conditions that predicted

MBD-related emergency room (ER) visits in adolescents in select cities (i.e., Asheville,

Charlotte, Greenville, Hickory, Raleigh, Wilingminton) in North Carolina. Daily

MBD-related ER visits, which totaled over 42,000 records were paired with daily

environmental conditions, including hot ambient temperatures, as well as sociodemographic

variables to determine if certain environmental conditions lead to higher vulnerability to

exacerbated mental health conditions. Four machine learning models (i.e., generalized linear

model, generalized additive model, extreme gradient boosting, random forest) and a

distributed lag non-linear model (DLNM) were used to assess the impact of multiple

environmental and sociodemographic variables had on MBD-related ER visits. The

best-performing machine learning model, determined by root-mean-squared error (RMSE)

and mean absolute error (MAE) values, from the all-cities scenario, and a DLNM was then
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applied to each of the six individual cities. In the all-cities scenario, sociodemographic

variables contributed the greatest to the overall MBD prediction. In the individual cities

scenario, four cities had a 24-hour difference in the maximum temperature, and two of the

cities had a 24-hour difference in the minimum temperature, maximum temperature, or NDVI

as a leading predictor of MBD emergency department visits. Results from this study can

provide new guidance on the application of machine learning models for predicting mental

health conditions during high-temperature events, as well as help inform what variables

contribute to youth mental and behavioral response during high-temperature events.
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Text: Chapter 1 of this thesis will be submitted to GeoHealth, an international peer-reviewed
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Extreme Heat and Mental Health-Related Outcomes in Adolescent Populations: A Machine
Learning Approach

Luke Wertis1, Margaret M. Sugg1, Jennifer D. Runkle2 , Douglas Rao2
1 Department of Geography and Planning, Appalachian State University, Boone, NC USA, 2 NC Institute for Climate Studies, NC State University, Raleigh,
NC, USA

Key Points:

- This study examines the mental and behavioral disorder response to changing environmental
conditions during summer months in North Carolina, USA.

- socio-demographic compared to environmental factors were more predictive of mental health
outcomes in adolescents.

- Findings indicate the effect of place-based differences in a youth mental health response to
extreme heat.
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Abstract: There is growing evidence indicating that extreme environmental conditions in

summer months have an adverse impact on mental and behavioral disorders (MBD), but there is

limited research looking at adolescent populations. The objective of this study was to apply a machine

learning approach to identify key environmental conditions that predicted MBD-related emergency

room (ER) visits in adolescents in select cities (i.e., Asheville, Charlotte, Greenville, Hickory,

Raleigh, Wilingminton) in North Carolina. Daily MBD-related ER visits, which totaled over 42,000

records were paired with daily environmental conditions, including hot ambient temperatures, as well

as sociodemographic variables to determine if certain environmental conditions lead to higher

vulnerability to exacerbated mental health conditions. Four machine learning models (i.e., generalized

linear model, generalized additive model, extreme gradient boosting, random forest) and a distributed

lag non-linear model (DLNM) were used to assess the impact of multiple environmental and

sociodemographic variables had on MBD-related ER visits. The best-performing machine learning

model, determined by root-mean-squared error (RMSE) and mean absolute error (MAE) values, from

the all-cities scenario, and a DLNM was then applied to each of the six individual cities. In the

all-cities scenario, sociodemographic variables contributed the greatest to the overall MBD

prediction. In the individual cities scenario, four cities had a 24-hour difference in the maximum

temperature, and two of the cities had a 24-hour difference in the minimum temperature, maximum

temperature, or NDVI as a leading predictor of MBD emergency department visits. Results from this

study can provide new guidance on the application of machine learning models for predicting mental

health conditions during high-temperature events, as well as help inform what variables contribute to

youth mental and behavioral response during high-temperature events.
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Keywords:Machine Learning, Mental and Behavioral Disorders, Distributed Lag

Non-Linear Model, Adolescents

Plain language abstract: There is new evidence showing that really hot weather during the

summer might make it harder for people with mental and behavioral disorders to cope. But not much

research has been done on adolescents. This study used machine learning to look at data from over

42,000 visits to the emergency room for mental and behavioral issues in adolescents in North

Carolina. We examined the association between adolescent mental and behavioral disorders and

environmental conditions using different types of computer models. The research found that in some

cities, environmental factors like the temperature,had a big impact, while in other cities, factors like

where people lived and their sociodemographic backgrounds were more important. Overall, this study

suggests that really hot weather might make it harder for young people with mental and behavioral

disorders to cope, but this might not be the case everywhere. And things like where people live and

their backgrounds also play a big role in their mental health.

1. Introduction

The burden of mental illness in the United States is substantial; 1 in 5 individuals experience

a diagnosable mental illness each year (Center for Disease Control [CDC], 2021; Mental Health

America, 2018). Instances of mental health are the highest among young adults aged 18-25, with 1 in

3 reporting having a mental illness (Substance Abuse and Mental Health Services Administration

[SAMHSA], 2021). The direct cost of addressing and treating mental illness in the United States is

growing annually, with the annual cost increasing by 40% in the last seven years (Roehrig, 2016;

SAMHSA, 2021). Additionally, nearly $300 billion is estimated to be lost to the cost of disability

payments and workers' productivity (Pearson, 2014).
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Environmental conditions such as air temperature have been associated with mental health

disorders ( Berry et al., 2010; McMichael et al., 2006; Mullins et al., 2019; Wang et al., 2014), but the

majority of this work has been focused on adult rather than youth populations (Sugg et al. 2018).

Despite a strong association, there is no universal temperature threshold for when mental health

begins to be negatively affected. Researchers have identified a strong association between high

ambient air temperatures (24.5-28°C) over a period of up to seven days and a strong increase

(26-29%) in mental and behavioral disease emergency visits compared to days below this threshold

(Wang et al., 2014; Peng et al., 2017). Research has also observed a positive association between

increased hospital admissions for MBDs (7.3%) and heat-wave days (Hansen et al., 2008).

Additionally, previous research has shown an overall increase in mental health admittance during

summer months for select locations (Toronto Canada, 10 labor market regions in New York, and Erie

and Niagara counties in New York) (Wang et al., 2018; Yoo et al., 2021[a]; Yoo et al., 2020[b]).

Despite many studies investigating the mental health susceptibility to extreme heat events, the lack of

defined metrics of how environmental (e.g., vegetation amount, ambient temperature, humidity) and

socioeconomic factors (e.g., income and race) contribute to susceptibility means that there is still a

need to better understand this relationship (Park et al., 2018; Wang et al., 2018).

Future projections show that the Southeastern United States will likely experience an

increase in average temperature as high as 8°F along with an increase of up to 50 additional days over

95°F in some areas, all of which will lead to an increase in heat stressand heat-related deaths (EPA).

However, there has been little research on how different geographical and climatological regions

respond to high-temperature extremes and the susceptibility of geographical differences, particularly

in the southeastern US, a region regularly impacted by high temperature and humidity (Park et al.,

2018). The extreme heat and health associations are typically assessed by looking at a select

individual area (Hansen et al., 2008; Rocklöv et al., 2014) or multiple urban cities spread across a

single country (Ogata et al., 2021). There is limited research across a large geographic area to

understand how place-based disparities in access to greenspaces or other mental health-promoting
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resources influence the heat-health relationship (Mullins et al., 2019). As a result, there is limited

information about how neighboring cities differ in their response behavior and what contributes to

this differing response.

It would be useful to capture the driving risk factors in predicting the occurrence of MBDs for

determining interventions to address climate change’s implications of mental health. However, the

lack of identifiable risk factors delays an accurate prediction and lowers the utilization of available

medical resources which could be provided in a more effective manner to improve response rates,

decrease mortality, and reduce medical costs (SAMHSA, 2021). Due to the distribution of

environmental stressors, simple models (i.e., linear regression, additive model) are used for their ease

of interpretation, but at the expense of accuracy (Aragones et al., 2002; Benka-Coker et al., 2020;

Sanchez et al., 2020). Additionally, it can be troublesome to handle the problems of less accurate

predictions and collinearity of multiple stressors in a data-driven problem. State-of-the-art machine

learning approaches (e.g., random forest and XGBoost), can create useful predictions when handling

multicollinearity within the data (Belgiu and Drăguţ, 2016; Kotsiantis, S., 2011; Piramuthu, S., 2008;

Zhao et al., 2019). However, the lack of interoperability has impacted their application in medical

decision support (Lundberg et al., 2018). Recently, the SHapely Additive exPlanations (SHAP) has

been used to allocate contribution values for model outputs among the explanatory variables

(Lundberg and Lee, 2017).

The aim of this study is to identify what regional differences in environmental and

socio-demographic conditions predict ER visits for MBD in adolescents living within six

metropolitan cities in the warm season. We hypothesize that there is an association between hot

ambient temperatures and youth mental health (ages 5 to 24) but that socioeconomic and regional

differences are the most influential factors involved in explaining mental health disparities. A

secondary aim of this analysis is to identify the leading environmental factors, with a focus on

ambient temperature and greenspace, that predict adolescent mental health responses at the city level.

We will explore multiple machine learning approaches (i.e., generalized linear model, generalized
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additive model, random forest, and extreme gradient boosting), with the best-performing model being

selected to identify the leading contributors to the mental health outcome. These top contributing

variables will then be explored via SHAP analysis. Machine learning models offer more precise and

robust results than traditional linear regression and additive models. SHAP values are able to quantify

variable contribution, removing the previous lack of interoperability in non-linear model results.

Interpretability will enable us to identify high-impact non-linear environmental risk factors for ER

visits related to MBDs in North Carolina adolescents. Results from this study can provide new

guidance on the application of machine learning models for predicting mental health conditions

during high-temperature events, as well as help inform what variables contribute to a communities

mental and behavioral response during high-temperature events.

2. Materials and Methods

2.1 Data

2.1.1 Study Population

In this study, the MBD cases were obtained from the Shep’s Center for Health and Human

Services Research dataset, which contains all ER visits across North Carolina (SHEPS, 2022).

Diagnosis of mental health and behavioral conditions were identified using ICD-10 diagnosis codes

(F00-F99) in any of the diagnostic categories. We collected the daily case counts of mental and

behavior-related visits in Asheville, Hickory, Charlotte, Raleigh, Wilmington, and Greensville from

the summer (June, July, and August) of 2016 to 2019 of individuals between the ages of 5 and 24,

which was used as the outcome variable. The study locations were selected because they represent a

range of climates across NC while supporting a large enough sample size for the statistical analysis.

ER visits were selected for between 2016 and 2020, this was determined based on the change from

6



ICD-9 to ICD-10 codes in 2016, leading to a classification change in several mental health-related

codes. Additional, 2019 was chosen as to not include data during the COVID-19 pandemic, as

hospital visits decreased for mental health due to a lack of hospital space. The cities were treated as a

categorical variable in the model analysis.

Fig 1 Study area with the ZIP Codes that comprise the six cities in North Carolina that are part of the study

highlighted in a unique color and the ZIP Codes not in the study are shaded gray.
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Table 1 Sociodemographic information for each of the six cities in the dataset between June and August from

2016 to 2019.

Asheville Hickory Charlotte Raleigh Greenville Wilmington

Total Population 194,953 103,044 907,489 739,710 140,723 169,921

Population between 5
and 24 42,633 26,607 240,923 199,645 50,559 47,975

Median Age of City 42.15 40.17 34.78 35.71 31.7 37.96

Male to Female Ratio 91.48 93.30 93.62 95.41 90.33 90.28

ICE Income1 -0.14 -0.27 0.06 0.28 -0.21 -0.16

ICE Race1 0.82 0.79 0.19 0.48 0.27 0.61

Total Mobile Home, % 2.08 2.07 0.58 0.81 1.53 1.22

Does not Speak English,
% 8.03 14.80 18.81 15.34 7.58 7.30

Below Poverty Line, % 14.825 17.23 15.64 12.56 22.40 20.94

No High School
Diploma, % 17.89 22.7 13.15 11.69 16.48 18.04

Unemployment, % 3.775 5.5 5.796 3.97 7.03 5.48
1ICE metrics range from -1 (least privilege) to 1 (most privileged)

2.1.2 Socio-demographic Data

Additional sociodemographic information was obtained for each city including the median

age, total population, population of our study age, male-to-female ratio, percent of the population

without a high school diploma, percent unemployment, percent English speakers, percentage of

mobile homes, and the Index of Concentration at the Extremes (ICE) metrics (Krieger et al., 2016)

(Table 2). The ICE income ratio is the number of persons in the 80th percentile of income subtracted

from the 20th percentile, divided by the total population with a known income. The ICE race metric is

derived from the ratio of white to black individuals (Krieger et al., 2016). The ICE metrics range from

-1 (least privilege) to 1 (most privileged) (Krieger et al., 2016). Variables were from the American

Community Survey (2016). Lastly, the rural-urban commuting area (RUCA) codes collected from the

United States Department of Agriculture, which use population density, urbanization, and daily
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commuting were used to delineate metropolitan, micropolitan, small-town, and rural commuting areas

based on the size and direction of the primary (largest) commuting flows (USDA, 2020), for the ZIP

Codes comprising the area within the chosen cities, city limits.

Table 2 Variables considered as predictors of adolescent mental and behavioral disorders in North Carolina,

2016-2019.

Category Variable & Operational definitions Association with Mental Health Outcomes Citation

Socioeconomic
Status

%Unemployment - the number of
individuals unemployed

Total Mobile Homes - The percentage of
mobile homes in a city

Non-English Speakers - The percentage of
individuals who do not speak English in a

city
No High School Diploma - The percentage

of the cities population without a high
school diploma

Below Poverty Line - The percentage of
the cities population that is below the

poverty line

These variables are proxies for low income,
studies suggest that individuals without

access to more resources have a greater risk
of temperature-related shocks to mental

health.

(Reiss 2013;
Mullins & White,
2019; Wang et. al.,

2016)

Green Space
NDVI - Method of quantifying vegetation

greenness
In urban environments green space has been
shown to lower temperatures and provide

protection to pedestrians.

(Schatz &
Kucharik, 2015 ;
Kianmehr & Lim,

2022)

Climate
Conditions

TMAX - The daily maximum temperature
TMIN - The daily minimum temperature
TAVG - The mean value of the daily
maximum and minimum temperature
RH - The daily mean relative humidity
24-hr TMAX- Current day maximum

temperature subtracted from the previous
day's maximum temperature

24-hr TMIN - Current day maximum
temperature subtracted from the previous

day's minimum temperature
EHF - Method of calculating the severity of

a heatwave

High-temperature values have been found to
increase mental health outcomes risks.
Increased relative humidity values are

associated with an increase in adverse health
outcomes.

A lower 24-hour temperature difference has
been shown to increase an individual's health

risk during the summer months.
EHF is an established method of identifying
heatwaves, heatwaves have been shown to
increase an individual's risk of adverse

health outcomes.

(Mullins et al.,
2019; Wang et al.,
2019; Ogata et al.,

2021)
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Category Variable & Operational definitions Association with Mental Health Outcomes Citation

Residential and
economic
segregation

ICE Race - Ratio of residential segregation
ICE Income - Ratio of economic

segregation

These metrics have shown to be useful for
public health monitoring, as they capture the
full range of privilege and deprivation and
are more versatile than traditional poverty

metrics.

(Conner et al.,
2010; Krieger et

al., 2016)

Demographic

Male-Female Ratio - The ratio of males for
every 100 females in a city

Median age - The average age of the cities
population

Sex was considered due to higher rates of
help-seeking behavior being identified in

females.
The median age was considered due to more

resources being allocated to the older
population than the younger population

which will be more present in cities with an
older median population

(Oliver et al.,
2005; The
Government

Office for Science,
2019)

2.1.3 Weather data

Daily gridded raster temperature data at 4 km resolution was obtained from the PRISM Climate

Group (PRISM, 2022); the raster was aggregated to the city level by taking a weighted mean average

of daily climate metrics; minimum temperature (TMIN) (°C), average temperature (TAVG) (°C),

maximum temperature (TMAX) (°C), and dew point for all grid points within a city, where the values

from each grid point are combined in order to calculate the mean value within the grid. In addition to

the metrics obtained by PRISM, several other metrics were derived; the TMAX 24-hour difference

(°C), TMIN 24-hour difference (°C), and TAVG 24-hour difference (°C) which were obtained by

subtracting the current days' value by the previous day's value. Relative humidity (RH) (%) was

obtained as a product of TAVG and dew point, and the heat index was calculated using TAVG and

relative humidity. Lastly, excess heat factor (EHF) was calculated using TAVG and following the

methodology from Nairn et al., 2014. R 4.2.0 was utilized to perform this raster analysis at the city

level.

2.1.4 Green Space data
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The Normalized Difference Vegetation Index (NDVI) was obtained from the National Oceanic and

Atmospheric Administration (NOAA, 2022). NDVI is used to quantify vegetation greenness and is

used to understand vegetation density, ranging from 1 to -1 from dense vegetation to barren rock

(United States Geological Survey [USGS], 2018). The spatial resolution of the data set was 5km with

a temporal resolution of 24 hours. The raster was aggregated to the city level by taking a weighted

mean average of daily NDVI value for all grid points within a city, where the values from each point

are combined in order to calculate the mean value within the grid. R 4.2.0 was utilized to perform this

raster analysis at the city level.

Cities received a categorical value depending on which of the three geographical regions of

North Carolina they were located in, Mountains, Piedmont, and Coastal Plains. Additionally, the

month of the year and day of the week was notated in the data set and incorporated into the final

models. All variables calculated at the ZIP Code level were then aggregated with the other ZIP Codes

corresponding to their given city.

2.2 Model Establishment

2.2.1 Preprocessing

Prior research has documted a strong association between exposure to high temperatures and

increased risk of MBD-related ER visits (Ogata et al., 2021; Son et al., 2016; Wang et al., 2018; Wang

et al., 2019). Therefore, this study focused on the warmer period (June through August).

Multicollinearity among the sociodemographic and environmental variables was assessed against the

outcome variable, mental and behavioral health conditions, using the variable inflation factor

(Dormann et al. 2012; Graham 2003; O’brien 2007). Independent variables were removed when they

had a Variable Inflation Factor (VIF) value greater than 10, an indication of multicollinearity (Menard
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1995; Mason et al. 2003; Neter et al. 1989). To select the best variables with low multicollinearity, the

variable with the largest VIF value was removed, and the model was retested until all variable’s VIF

values remained under 10 (Craney et al., 2002) (Table 3).

Table 3 Variable Inflation Factor of the chosen variables for GLM, GAM, RF, and XGBoost models

Variable GLM and GAM RF and XGBoost

Total Population - 6.12

Median Age 3.546 3.15

Male to Female Ratio 8.31 -

Population 5-24 per 1000 6.62 -

City 3.71 2.79

ICE Income1 - 3.01

Day of the week 1.00 1.00

Month of the year 1.12 1.12

NDVI 1.04 1.04

TMIN 6.95 6.73

TMAX 6.17 6.16

TMIN 24 hour difference2 1.71 1.70

TMAX 24 hour difference2 1.62 1.63

EHF3 1.28 1.28

Relative Humidity 3.48 3.43

Above 95th 1.38 1.38
1ICE metrics range from -1 (least privilege) to 1 (most privileged)
224 hour difference range from negative to positive
3EHF values begin at 0

2.2.2 Procedure of Prediction Models

Four kinds of machine learning models were assessed including (1) generalized linear model

(GLM) assuming Poisson distribution with multivariable predictors and log of population size as the
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offset; (2) generalized additive model (GAM) assuming Poisson distribution with multivariable

predictors and log of population size as the offset; (3) random forest models with multivariable

predictors; and (4) extreme gradient boosting trees (XGBoost) with multivariable predictors (Table 4).

Among the four approaches, the best prediction model was determined to be the model with the

lowest root-mean-square error (RMSE) and mean absolute error (MAE) (Ogata et al., 2021). GLM is

a generalized linear model in which a dependent variable is linearly related to independent variables

by a log link function when using a Poisson distribution (IBM, 2011). By using spline functions,

GAM can model non-linear associations between the independent variables and the dependent

variable. Random forest is a tree-based machine learning model with an ensemble by fitting a number

of decision trees on different subsamples of the training dataset and combining their predictions for a

more accurate result (Breiman, 2001). XGBoost is an optimized distributed gradient-boosting

decision tree model (XGBoost, 2022). XGBoost trains a sequence of decision trees, with each

iteration attempting to correct the errors of the trees already in the previous model.

Table 4 Summary characteristics of machine learning algorithms, packages, and optimized hyperparameters

for the training dataset.

Model Package Optimized
Hyperparameters

Advantages

Generalized
Linear Model

glmnet penalty = 0.096
mixture = 0.1

- Linear regression is straightforward to
understand and explain and can be
regularized to avoid overfitting (ExamPA,
2022).
- In addition, linear models can be updated
easily with new data.

Generalized
Additive Model

gamSpline Degrees of freedom
= 1

- Can model non-linear associations of
independent variables with a dependent
variable by using spline functions (Molnar,
2022).
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Model Package Optimized
Hyperparameters

Advantages

Random Forest ranger mtry = 1
trees = 506,
min_n = 101

- Can use the Boruta algorithm as a
preliminary selection of model variables to
reduce the calculating time of final random
forest models
- Capture the potential non-linear
relationship between heat-health outcome
occurrence and other metrological and
socioeconomic variables (IBM, 2022) .

Extreme
Gradient
Boosting

XGBoost nrounds = 51
max_depth = 3
eta = 0.1
gamma = 0.3
colsample_bytree =
0.8
min_child_weight =
5
subsample = 0.4

- Able to handle missing data, can be
optimized on different loss functions and
provides several hyper parameter tuning
options that make the function fit very
flexible (Pal 2022).
- Able to capture nonlinearity in the
dependence structure.

2.2.3 Feature selection and hyperparameter optimization

For each model, 5-fold cross-validation (CV), which is a resampling procedure that randomly selects

hold-out test data for every fold to test the performance of the training model. This procedure is

repeated based on the number of folds selected and leads to a more robust model, was used to identify

the optimal predictors (i.e., feature selection) by using recursive feature selection (RFE) and to

identify optimal hyperparameters (i.e., hyperparameter tuning) using grid-search (Chen et al., 2018).

The optimal model and hyperparameters were chosen based on having the lowest RMSE. This was

performed using a randomly selected 80% of the data from the original data set.

RFE is a wrapper method of backward feature selection that searches a defined subset of predictors by

first training a model by using all possible predictors, calculating the models' performance, and then
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calculating the variable importance of the model. After the first round, the model subsets the

top-performing variables. This process occurred for each group of predictors in the first round. In the

second iteration, an updated model of the optimally selected predictors was tested in the same manner

as before; this process was repeated until the best subset of predictors was determined by having the

lowest RMSE (Kuhn 2019).

In the final models, city-level socioeconomic information included median age, population

per 1000 of individuals between the ages of 5 and 24, ICE race ratio, and ICE income ratio. Calendar

information included the day of the week and the month of the year. Landcover and location

information included NDVI and geographic region. Climate information included TMIN (°C), TMAX

(°C), the TMIN 24-hour difference (°C), TMAX 24-hour difference (°C), EHF, and RH (%). The total

population was modeled into a log of population per 1000 as the offset term in GLM and GAM but

was excluded from the random forest and XGBoost.

2.2.4 Model Selection and Validation

We used the remaining randomly split 20% of the data from the original data set for model

testing and validation. Predictive accuracies of the four different prediction models were evaluated

using RMSE and MAE. RMSE is the mean difference between observed and predicted values and

shows an average predictive error; thus, the smaller the RMSE, the better the model. MAE is the

mean of the absolute value of the difference between the predicted and observed values, a smaller

MAE indicates a better prediction. The model with the lowest RMSE and MAE was selected as the

best fit and used to identify which variables contribute to an individual's susceptibility to being

admitted to the ER for MBDs.
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2.3 Evaluation of Developed Prediction Model Variables

We examined the impact that the most important variables had on the prediction of MBD

cases for the best-performing model by using SHapley Additive exPlanations (SHAP) values. The

goal of SHAP is to explain why the model predicts a certain outcome based on the variable values

that are provided and the contribution that those values contribute to the final prediction (Molnar,

2022, Lundberg and Lee, 2017). The SHAP value shows how much an individual variable contributes

(either negatively or positively) to the difference between the mean and the actual prediction in the

context of the other variables in the data. The mean absolute contribution value is the SHAP value,

which indicates the average absolute contribution value that variable makes to the overall predicted

outcome. Analysis was conducted using gam (Hastie, 2022), caret (Kuhn, 2022), tidymodels (Kuhn,

2020), iBreakDown (Gosiewska and Biecek, 2019), and vip (Brandon et al., 2020) packages in R

version 4.2.0.

2.4 Sensitivity Analysis: Distributed Lag Non-Linear Model

Prior literature has demonstrated a non-linear and delayed (e.g., typically 3 to 7-day lag) relationship

between temperature and MBD-related ER visits; therefore we performed the DLNM combined with

a generalized linear model as a sensitivity analysis to further confirm the temperature-related results

from our top-performing ML approach. In each city, a DLNM was applied as a quasi-Poisson

distribution with a lag period of 0 days in order to establish the associations between temperature and

the relative risk of increased ER visits. DLNM can characterize the non-linear exposure-response

relationship at varying delayed exposure times (Gasparrini, 2011). For this analysis, the

region-specific temperature-ER visit association for MBDs was calculated. In this study, DLNM was

employed to investigate the relationship between exposure to varying temperatures in the summer
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months for each individual city and the corresponding mental and behavioral ER visits. The model is

written as:

logE(Yt) = α + cb(Tempt, df1) + ns(RHt, df2) + ns(Timet, df3) + βDOWt (1)

Where E(Yt) is the expected ER visits related to MBDs on day t as a logarithmic function of an

intercept (α); cb() denotes the cross basis function for temperature (daily average temperature); ns()

denotes the natural cubic spline applied to relative humidity and time trend. Three knots in the lag

space of the cross basis-function were set equally spaced values in the log scale of lags for more

flexible lag effects at shorter delays (Gasparrini 2011; Yoo et al., 2020[b]). The day of the week

(DOWt ) and Time were used as controls for the temperature and relative humidity variables

(Dominici 2004). The degrees of freedom (df) for the predictors were set; df1= 4 for the temperature

in the crossbasis function, df2= 2 for relative humidity, and df3= 7*number of years for the time

trend to model for the season and long-term time trends. These parameters were identified based on

previous studies (Crank et al., 2022; Gasparrini 2011; Peng et al., 2017; Ye et al., 2022; Yoo et al.,

2020[b]) and then tested for the best fitting model based on qAIC (Guo et al., 2011). Analysis was

conducted using glm to analyze a quasi-Poisson generalized linear regression model and dlnm

(Gasparrini, 2011) and mixmeta (Sera et al., 2019) packages for distributed lag models and

meta-analyses, respectively in R version 4.2.0.
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3. Results

3.1 Prediction for Mental Health across all cities

The variables used in the training and testing datasets are located in Table 5. The total number

of MBDs reported from June-August of 2016 to 2019 is summarized as 31,656 and 7,976 cases for

training and testing, respectively.

Table 5 Characteristics of Train and Test datasets in six North Carolina cities between June and August from

2016 to 2019.

Variable Train Test

Mental and behavior disorders 31656 7976

Median Age 37.15 (33.68 - 40.82) 36.79 (33.33 - 40.24)

Male to female ratio 92.4 (90.54 - 94.29) 92.43 (90.51 - 94.34)

ICE Income -0.075 (-0.26 - 0.11) -0.072 (-0.26 - 0.12)

ICE race 0.53 (0.29 - 0.77) 0.51 (0.27 - 0.75)

Percent Unemployment 5.24 (4.13 - 6.35) 5.33 (4.21 - 6.45)

NDVI 0.39 (0.34 - 0.45) 0.4 (0.35 - 0.44)

TMAX, °C 30.67 (27.85 - 33.49) 30.68 ( 27.80 - 33.56)

TAVG, °C 25.37 (22.67 - 28.07) 25.4 (22.82 - 27.99)

TMIN, °C 20.07 (17.02 - 23.12) 20.13 (17.32 - 22.94)

TMAX 24 hour difference, °C -0.002 (-2.17 - 2.16) 0.065 (-2.07 - 2.20)

TMIN 24 hour difference, °C -0.02 (-1.71 - 1.67) 0.024 (-1.66 - 1.71)

Relative Humidity, % 71.53 (63.81 - 79.25) 71.81 (64.05 - 79.57)

Excessive Heat Factor 0.0052 (-0.046 - 0.0565) 0.0037 (-0.036 - 0.043)
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We developed machine learning models to predict the number of MBDs using a generalized

linear model (GLM), generalized additive model (GAM), random forest, and extreme gradient

boosting (XGBoost) using multivariable predictors in the training dataset. Amongst these models,

GAM was chosen based on having the lowest root-mean-squared error (RMSE), 4.96, and lowest

mean absolute error (MAE), 3.59, when applied to the testing data (Table 6). The performance across

the entire test data set is graphically represented in Fig. 2. The observed number of MBDs was found

to be strongly correlated with the predicted values from all four machine-learning approaches. In the

GAM, twelve of the predictor variables that had variable inflation factor values below 10 were

selected (Median age, population of our study age, male-to-female ratio, the city location, day of the

week, TMAX 24-hour difference (°C), TMIN 24 hour difference (°C), relative humidity, TMAX,

TMIN, month of the year, and NDVI of the city) as the top contributors to the predictive outcome of

the model set by the recursive feature elimination (RFE) method.

Table 6 RMSE and MAE of the models for train and test performance for all machine learning approaches.

GLM GAM RF ranger XGBoost

Train RMSE 4.71 4.71 4.01 4.35

Test RMSE 4.97 4.96 4.96 5.00

Train MAE 3.45 3.45 2.94 3.20

Test MAE 3.59 3.59 3.62 3.68
RMSE= Root Mean Squared Error, MAE= Mean Absolute Error
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Fig 2 Comparison between observed and the predicted number of mental and behavioral disorder-related

emergency department visits across six North Carolina cities from June to August 2016 to 2019 by GLM,

GAM, RF, and XGBoost. The black line indicates the observed totals of MBD-related emergency department

visits per day across six North Carolina cities and the red line indicates the predicted total number of mental and

behavioral-related emergency department visits per day in the six North Carolina cities. These predictions were

obtained from the following models: (1) GLM using multivariable predictors, (2) GAM using multivariable

predictors, (3) RF using multivariable predictors, and (4) XGBoost using multivariable predictors.

The GAM model had all twelve top-performing variables' SHAP values calculated which are

summarized in Fig 3. and show the importance of its predictors. The SHAP summary model

illustrates the leading variables in identifying what leads a city to be more prone to MBDs. The

variables that lead to higher predictions of MBDs were a larger population between the ages of 5 and

24 per 1000, a smaller male-to-female ratio, higher median age, being located on the eastern side of

the state, lower minimum temperature, higher relative humidity, being in the first half of the week,
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higher 24-hour minimum temperature difference, lower 24-hour maximum temperature difference,

and lower NDVI all lead to higher rates of MBDs.

Fig 3 SHAP (SHapley Additive exPlanations) values and contributions of the best-performing variables in the

best model (GAM model). The plot shows the importance of the predictors, with the most important at the top,

of the best-performing model using SHAP values. The effect of the contribution is notated as a positive or

negative point-level contribution; the given variables’ value is represented with a sliding scale from yellow

representing a low variable value to purple representing a high variable value for each. The x-axis SHAP value

illustrates the contribution of every variable to the predicted number of MBD emergency department visits, with

positive values leading to a higher number of predicted emergency room visits and a negative value leading to a

lower number of predicted emergency room visits.

3.2 Prediction for Mental Health in Each City

Individual GAM models were developed for each of the six cities in this analysis to identify

leading environmental contributors to an individual's risk of an MBD, building this model took into
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account land cover and temperature data and used temporal information as controls for the model

(Table 7).

The RMSE and MAE were summarized across all six cities (Table 8), the individual city approach

had a smaller mean RMSE (4.43 versus 4.96) and a smaller mean MAE (3.53 versus 3.59) than the all

cities approach.

Table 7 Temperature and land cover information averaged across the study period for each of the six cities in

the dataset between June and August from 2016 to 2019.

City Ashville Hickory Charlotte Raleigh Greenville Wilmington

Mental and
behavioral
disorders 3773 1877 17533 9811 2462 4176

TMAX
28.05 (25.69 -
30.41)

30.32 (27.71 -
32.93)

31.76 (29.17 -
34.35)

30.86 (28.21 -
33.51)

31.56 (28.9 -
34.22)

31.49 (29.17 -
34.81)

Tmean
22.36 (20.35 -
24.37)

24.76 (22.59 -
26.93)

26.24 (24.05 -
28.43)

25.63 (23.27 -
27.99)

26.35 (23.94 -
28.76)

26.93 (24.82 -
29.04)

Tmin
16.67 (14.28 -
19.57)

19.21 (16.89 -
21.53)

20.72 (18.43 -
23.01)

20.4 (17.91 -
22.89)

21.14 (18.5 -
23.78)

22.36 (19.98 -
24.74)

Tmax 24hr diff
0.0088 (-1.820
- 1.8378)

0.0127 (-2.278
- 2.304)

0.0164 (-2.245
- 2.277)

0.0191 (-2.268
- 2.306)

0.0057 (-2.320
- 2.3317)

0.0048 (-1.921
- 1.931)

Tmin 24hr diff
0.0004 (-1.509
- 1.511)

-0.0037
(-1.573 -
1.566)

-0.0089 (1.601
- 1.583)

-0.0116
(-1.693 -
1.678)

-0.0181
(-2.055 -
2.026)

-0.0213
(-1.736 -
1.694)

EHF
0.0026 (-0.022
- 0.030)

0.0016 (-0.018
- 0.021)

0.0069 (-0.048
- 0.062)

0.001 (0.012 -
0.010)

0.0097 (-0.064
- 0.083)

0.0076 (
-0.061 - 0.078)

Above 95th
0.0287 (-0.125
- 0.183)

0.0254 (-0.127
- 0.177)

0.0467 (-0.159
- 0.252)

0.0177 (-0.099
- 0.029)

0.0462 (-0.161
- 0.253)

0.0354 (-0.127
- 0.198)

NDVI
0.41 (0.16 -
0.66)

0.43 (0.22 -
0.62)

0.38 (0.16 -
0.60)

0.4 (0.18 -
0.62)

0.41 (0.16 -
0.66)

0.34 (0.20 -
0.48)
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Table 8 RMSE and MAE of the models for train and test performance of the GAM model for all six cities

individually. Normalized RMSE and normalized MAE for the test dataset to better illustrate how the models

performed on different datasets.

Ashville Hickory Charlotte Raleigh Greenville Wilmington Overall

Train RMSE 3.36 2.31 7.88 6.06 2.67 3.4 4.28

Test RMSE 3.39 2.51 8.24 6.05 2.87 3.5 4.43

Train MAE 2.69 1.82 6.56 4.85 2.17 2.75 3.47

Test MAE 2.81 1.98 6.6 4.83 2.24 2.73 3.53

normalized
Test RMSE 0.331 0.486 0.173 0.227 0.416 0.303 0.32

normalized
Test MAE 0.275 0.384 0.138 0.181 0.324 0.236 0.26

To better understand the difference in the influence of ambient temperature and land cover on

MBD-related ER visits, SHAP values were calculated for each city. The top-performing variables

which were identified within the GAM model were chosen to be represented in the SHAP model

(Lundberg and Lee, 2017). The SHAP value model can be seen in Fig 4. From these models, we can

see that in Asheville, a higher relative humidity, lower minimum temperature, higher 24-hour

maximum temperature difference, and higher 24-hour minimum temperature difference all lead to a

higher incidence of MBD. In Hickory, a lower 24-hour maximum temperature difference leads to

higher incidences of MBD. A lower maximum temperature leads to higher incidences of MBD in

Charlotte. A lower 24-hour maximum temperature difference, higher NDVI value, a lower maximum

temperature, and higher 24-hour minimum temperature difference all lead to higher incidences of

MBD in Raleigh. In Greenville a higher NDVI and in Wilmington and higher 24-hour maximum

temperature difference leads to higher incidences of MBD.
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Fig 4. Shows the SHAP values for (a) Asheville, (b) Hickory, (c) Charlotte, (d) Raleigh, (e) Greenville, (f)

Wilmington. SHAP values and contributions of the best-performing variables in the best model (GAM model).

The plot shows the importance of the predictors, with the most important at the top, of the best-performing

model using SHAP values. The effect of the contribution is notated as a positive or negative point-level

contribution; the given variables’ value is represented with a sliding scale from yellow representing a low

variable value to purple representing a high variable value for each. The x-axis SHAP value illustrates the

contribution of every variable to the predicted number of MBD emergency department visits, with positive

values leading to a higher number of predicted emergency room visits and a negative value leading to a lower

number of predicted emergency room visits.

3.3 Sensitivity Analysis

Relying on a standard approach typically used in environmental health studies, the DLNM

was employed. We investigated the association between daily average temperature and any

MBD-related ER visit to confirm our machine-learning ambient temperature findings in the individual

city models. Figure 5 shows the change in relative risk (RR) of ER visits associated with MBD for

each of the individual six cities at the 2.5th and 97.5th percentile of temperature.
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Fig 5. The individual effect of daily average temperature for all MBD-related emergency room visits for (a)

Asheville, (b) Hickory, (c) Charlotte, (d) Raleigh, (e) Greenville, (f) Wilmington. The optimal emergency room

visit temperature was defined as the temperature that corresponded with the minimum risk of emergency

department visits. The black line indicated the relative risk, with the shaded area representing the 95%

confidence intervals (CI), dotted lines representing the 2.5th and 97.5th temperature percentile, and the gray

dashed line representing the optimal emergency room visit temperature.

The results indicate that in the all-cities model that there is not a significant association

between ER visits related to mental and behavioral disorders and extreme daily average air

temperature. For the 97.5th percentile of temperature across the all-cities model there was a

significant decrease in the risk associated with emergency department visits (RR = 0.97; 95% CI:

0.93-0.99).

Table 9. Relative risk at the 2.5th and 97.5th percentile of temperature in the summer months between 2016 and

2019.

Location Low (2.5th percentile) High (97.5th percentile)

North Carolina 0.99 (0.96-1.02) 0.97 (0.93-0.99)

Asheville 1.02 (0.96-1.09) 0.91 (0.86-0.96)

Hickory 1.00 (0.94-1.08) 1.01 (0.95-1.06)

Charlotte 0.98 (0.94-1.02) 0.96 (0.93-0.99)

Raleigh 0.98 (0.93-1.03) 0.99 (0.95-1.05)

Greenville 0.98 (0.91-1.06) 0.96 (0.89-1.03)

Wilmington 0.98 (0.92-1.05) 0.99 (0.94-1.05)

Similar to the results found in the pooled cumulative effects model, no significant increase

was observed at the 97.5th percentile of temperature, the results can be seen in Table 9. A significant
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decrease in risk associated with the temperature at the 97.5th percentile was observed for Asheville

(RR = 0.91; 95% CI: 0.86-0.96) and Charlotte (RR = 0.96; 95% CI: 0.93-0.99).

4. Discussion

The objective of this study was to apply a machine learning approach to identify key

environmental conditions that predicted MBD-related ER visits in adolescents. Our findings from the

all-cities model indicate that socio-demographic variables contribute a greater impact on adolescents'

mental health compared to environmental variables. Important sociodemographic factors that

contributed the greatest to the predictive outcome included population between 5 and 24, male to

female ratio, and the median age of the city; while important environmental variables included

minimum temperature, relative humidity, and maximum temperature. These findings are consistent

with previous studies of extreme heat, which have demonstrated that the socio-demographic makeup

of a city contributes to the overall MBD health of its adolescent population more than the

environmental variables (Dessai, 2003; Wang et al., 2019). Further, Tthe increase in hospital

admissions on days of higher maximum temperature and higher relative humidity, found in the

all-cities machine-learning model, is consistent with multiple studies, which identified an increased

relative risk at higher maximum temperatures, even after adjusting for relative humidity as a covariate

(Crank et al., 2022; Mullins et al., 2019; Peng et al., 2017). In the individual city models, we found no

clear environmental variable contributing to an increased risk of MBD-related ER visits. However,

the GAM model with the use of the SHAP model to quantify the results indicated that the traditional

association between temperature and MBD-related ER visits was not consistent within our study area,

with lower minimum temperatures increasing MBD-related ER visits.

The secondary aim of this analysis was to identify the leading environmental factors of

mental health responses at the city level for six cities in North Carolina in the summer months
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between 2016 and 2019.The results of this analysis illustrate how environmental factors affect the

mental health response across varying geographic locations within North Carolina. All but two cities

had different environmental metrics as their leading predictors (i.e., Hickory and Willmington).

However, there were some shared commonalities, with four cities having the 24-hour difference in the

maximum temperature, and two of the cities having the 24-hour difference in the minimum

temperature, maximum temperature, or NDVI as a leading predictor of MBD emergency department

visits. Our work highlights the importance of local-level understanding when trying to understand

how temperature may influence MDB.

Our results indicate that when the city comprises a higher ratio of females to males, we see an

increase in the predicted number of MBD emergency room visits. Previous research has indicated that

females are more likely to display help-seeking behaviors compared to males (Oliver et al., 2005). We

also see that the population of our study age is a strong predictor, which indicates in cities with a

larger youth population, there are higher instances of MBD ER visits for that age group.

In contrast to previous studies, our minimum temperature results in the all-cities model

indicate that as the minimum temperature decreases, we see a rise in MBD ER visits. These results

contrast with previous research, which has indicated that minimum temperature plays a stronger role

than maximum temperature, which we see in our study, but that an increase in minimum temperature

corresponds with an increase in MBD ER visits rather than our observed decrease (Mullins and

White, 2019).

Our study contrasts with previous work focusing on an individual city's response during the

summer. Studies have found that as temperature increases, the risk for MBD increases, with studies

finding that at the 99th percentile of temperature, an individual is over 25% more likely to suffer from

a mental or behavioral disorder than at the 50th percentile of temperature ( Peng et al., 2017; Wang et
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al., 2013; Yoo et al., 2020[b]). However, in our analysis, we found that not only was maximum

temperature normally not the most predictive variable, but a high maximum temperature resulted in

lower MBD-related hospital visits when it was a top contributing variable. We confirmed our results

by conducting a sensitivity analysis using a distributed lag non-linear model (DLNM) and pooling our

results across all cities.

More specifically, the maximum temperature was a top contributing variable for Charlotte

and Raleigh in the individual city models. The SHAP values indicate that neither the highest nor

lowest maximum temperature values contributed to higher predicted ER visits. Still, rather

temperatures near the median contributed to higher predicted MBD emergency department visits.

These results are consistent with the results from the DLNM, which had a significant decrease in ER

visits in Charlotte at the highest average temperatures and no significant correlation between high

average temperature and ER visits in Raleigh.

The reason for this temperature-mental health difference could be based on the location of the

study. Previous studies have focused further north and therefore have cooler summers, with extreme

temperatures falling between 23°C and 27°C for the 75th to 97.5th percentile of temperature, whereas

in the Southeast US, where North Carolina is located, the 75th and 97.5th percentile of maximum

temperature being 33°C to 37°C ( Peng et al., 2017; Wang et al., 2013; Yoo et al., 2020[b]). Due to

the temperature reaching much higher levels, individuals might be more inclined to seek shelter

during these events, leading to fewer extreme heat exposures for adolescents in North Carolina and

mitigation of the environmental risk factors of heat-related MBD.
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4.1 Strengths and Limitations

This study had several notable strengths. First, we evaluated the association between summer

environmental data, sociodemographic information, and ER visits for any MBD in multiple cities

across North Carolina, which allowed for a more general state-wide analysis as well as a secondary

analysis looking at each city individually. We included variables that were not related to temperature

to assess if the MBD-related hospital visits were primarily affected by the climate or if

sociodemographic factors. Second, unlike most nonlinear model results that will indicate the top

contributing variables to the prediction (Wang et al., 2019), through the use of SHAP, we provide

precisely how each variable contributes to the outcome of the model. Unlike previous studies that

have used traditional additive models or DLNM, machine learning was employed to identify the top

predictive variables, and SHAP models were used to quantify the contribution that each of the top

variables made in the overall prediction of the model. Lastly, we tested multiple machine learning

approaches to ensure our results were robust (e.g., random forest).

This study had a few limitations. First, a longer study period could increase the robustness of

results and better identify trends. Second, an analysis of specific MBD would be more informative.

Lastly, ozone pollution generally has a high correlation with temperature and has been shown to

impact mental health (Wang et al., 2013), and should have been tested as a possible effect modifier in

the temperature-mental health relationship. However, our analysis was conducted at the ZCTA scale,

and ozone data was not readily available for this scale.
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5. Conclusion

This study is among the first to examine the driving factors behind MBD ER visits in North

Carolina, USA. Our study leveraged a daily ER inpatient dataset for the entire state of North Carolina,

allowing us to examine the daily MBD response in youth to varying environmental conditions and

socioeconomic changes. This study suggests that at the state level, socioeconomic factors contribute

more to an individual's mental and behavioral well-being during the summer than environmental

factors. At the city level, this study indicates that no clear environmental factor contributes to the

greatest risk of MBDs. Results from this study can provide new guidance on the application of

machine learning models for predicting mental health conditions and help inform what variables

contribute to youth mental and behavioral response during high-temperature events.
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